If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/25)^(2x+2)=125^x
We move all terms to the left:
(1/25)^(2x+2)-(125^x)=0
Domain of the equation: 25)^(2x+2)!=0We add all the numbers together, and all the variables
x∈R
(+1/25)^(2x+2)-125^x=0
We multiply all the terms by the denominator
(+1-125^x*25)^(2x+2)=0
| 8x-36+40=180 | | 8x-36+40=360 | | (5/2)w=25 | | 116+4x=7x+6 | | j+87=87 | | (5a-8)(2a-3)=0 | | 10a^2-31a+24=0 | | e+7=13.7e= | | 1.296^2n=216^n+10 | | 9=8^(2x-1) | | -k^2-3k-2=-5k^2 | | (2x+3(x-6)=180 | | 15+m12=13x+5 | | x^2-180x-416700=0 | | 2x-8+4x=180 | | 81+b(2)=1600 | | 5.5+b(2)=12.9 | | 5^(4x+2)=10^(3x-1) | | 7(x+4)=-27 | | (12)(11)(h)=2.244 | | -0.05t^2+3.5t=60 | | 9=x+5/2 | | 0.254xx=10 | | 4x(x-8)=20 | | 0.6=q10.8 | | (3x+15)+(x+10)+103=180 | | 0.25+1.11x=5.0 | | 2/5(5x-15)=8 | | 1/3k-1/2k=5 | | 1/4b+1/2=1 | | 9=x+52 | | 2x(x-5)-30=-24 |